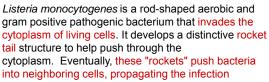

李斯特菌感染

衛福部 疾病管制署 中區傳染病防治醫療網 王任賢 指揮官

Outline

- Introduction
- Significance of Listeria monocytogenes
- Foodborne listeriosis
- Regulations
- Control

What is Listeria?


- Listeria monocytogenes is a type of bacteria that is found in water and soil
- Vegetables can become contaminated from the soil, and animals can also be carriers
- Listeria has been found in uncooked meats, uncooked vegetables, unpasteurized milk, foods made from unpasteurized milk, and processed foods
- Listeria can be killed by pasteurization and cooking

The Listeria genus

- Gram(+), non-sporeforming bacillus
- Six identified species
 - L. monocytogenes, L. innocua, L. welshimeri, L. seeligeri, L. ivanovii, and L. grayi
- Primary human pathogen
 - L. monocytogenes

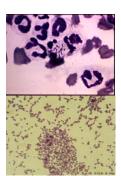
Significance of *L. monocytogenes*

- Ubiquitous presence
- Foodborne pathogen that causes listeriosis
 - 25,000 cases/year
 - exceptionally high mortality rate of 30%

Epidemiology in US

- About 2,500 people in the U.S develop Listeriosis each year.
- 5 out of every 100 people carry Listeria Monocytogenes in their intestines.
- About 20% of people die from the infection.
 - In 1989, there were 1,965 cases of Listeriosis with 481 deaths.
 - In 1993, there were 1,092 cases of Listeriosis with 248 deaths.
 - Listeria Monocytogenes reached the blood and cerebrospinal fluid in 89% of cases.
 - Listeriosis results is a higher number of hospitalizations than any other food-born illness.
- Pregnant women account for 27% of cases, people with immunodeficiency disorders account for 70% of cases.
- AIDS patients are 280 time more likely to contract Listeriosis than others.

Distribution of *L. monocytogenes*


- The environment
 - soil, water, animal feces, sewage, decaying vegetation
- Food
 - fresh food products of animal or plant origin
 - Prevalence
 - lightly preserved fish products up to 75%

Circulation of L. monocytogenes animal secretion and excretion animal environment soil-water soil-water animal products

How do you get Listeriosis?

- Eating food contaminated with *Listeria*.
- Babies can be born with Listeriosis if the mother eats contaminated food during pregnancy.
- Listeriosis is generally not contagious from person to person.

Factors affecting growth and survival: I

- Temperature
 - -0.4-45°C, optimum 30-35°C
- pH
 - pH 4.4-9.4, optimum pH 6.5-7.5
 - pH tolerance is temperature and acid dependent
 - antimicrobial activity
 - acetic acid > lactic acid > citric acid > malic acid > HCl

Factors affecting growth and survival: II

- Water activity
 - temperature and humectant dependent

temperature _ (°C)	humectant		
	glycerol	sucrose	NaCl
4°C	0.92	0.93-0.96	0.94
21 °C	0.91	0.925	0.924
30 °C	0.90	0.92-0.96	0.92

 L. monocytogenes is second only to staphyococci as a foodborne pathogen capable of growing at aw<0.93

水分活性之定義

- 以水蒸氣壓,平衡相對濕度,可導出如下之 Aw 的關係式
 - Aw=P/Po(1)
 - \therefore 0. 0 \leq Aw \leq 1. 0
- 式(1)為AW之定義式。此地P為在某溫度下 ,物體所含水之蒸氣壓,PO為在同溫度之純水 的蒸氣壓。
 - Aw=ERH (%)/100 (2)
- Aw 亦可以平衡相對濕度 (ERH)之 (2) 式表示關係。

Factors affecting growth and survival: III

- Nutritional requirements
- Vitamins
 - biotin (B₇), riboflavin (B₂), thiamine (B₁), and thioctic acid
- amino acids
- cysteine, glutamine, isoleucine, leucine, and valine

Foodborne listeriosis: I

- Foodborne illness caused by L. monocytogenes
 - 14 serotypes of *L. monocytogenes* have been designated
 - 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a,4b, 4bX, 4c, 4d, 5, 6a, 6b
 - Serotype 1/2a, 1/2b, and 4b account for 96% of human infections in the United States

Foodborne listeriosis: II

- At risk individuals
 - immunocompromised patients, pregnant women, the elderly, neonates, patients with diabetes
- Two forms of listeriosis
 - Invasive
 - non-invasive

Invasive listeriosis

- Incubation period
 - 30 days
- Minimum infectious dose
 - 103-109, depending on host and strain
- Symptoms
 - flu-like illness, meningitis, septicemia, nonmeningetic central nervous system infection, spontaneous abortion*, stillbirth*, perinatal septicemia*

Non-invasive listeriosis

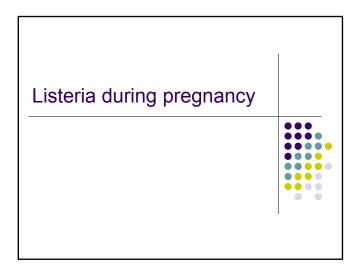
- Incubation period
 - 18-20 h
- Minimum infectious dose
 - · unclear, but greater than invasive listeriosis
- Symptoms
 - febrile gastroenteritis, fever, fatigue, headache, nausea, cramps, vomiting, diarrhea

What makes *L*. monocytogenes so deadly?

- Listeriolysin O
 - · the most significant virulence factor
 - responsible for β-hemolysis on erythrocytes and the destruction of phagocytic cells
 - present in all strains of L. monocytogenes
 - encoded by gene hly

Molecular determinants of pathogenesis

- 9 genes responsible for L. monocytogenes pathogenesis
 - hly:SH-activated hemolysin
 - plcA: phosphatidyl inositol specific phospholipase
 - plcB: lecithinase
 - mpl: lecithinase-specific metalloprotease
 - actA: surface protein (actin assembly)
 - inlA: internalin
 - prfA: positive regulatory factor of hly, plcA, plcB, and mpl
 - inIB: surface bound protein
 - iap: invasion associated protein


Mode of infection

- Enter via oral route, attachment and invasion of intestinal mucosa
- Enters lamina propria
- Engulfed by phagocytes
- Produces listeriolysin O to break phagosome and enter the cytoplasm of the phagocyte
- multiplies in the phagocyte and invades other tissues

Mode of infection LYSIS Boycarren Boycarr

Listeria monocytogenes The Disease Entity Meningoencephalitis MALINE RESPONSE Subclinical programiomatous hepatitis Placentitis Abortion neonatal septicemia PEDAL SHEDDING

Risks for pregnant woman getting listeriosis

- According to the Center of Disease Control (CDC), an estimated 2,500 people became seriously ill each year in the U.S. and among these, 500 will die.
- Pregnant women account for 27% of these cases
- The CDC claims that pregnant women are 20 times more likely to become infected than non-pregnant healthy adults.

Symptoms of Listeriosis

- Shows up 2-30 days after exposure
- Mild flu-like symptoms, headaches, muscle aches, fever, nausea, and vomiting
- If the infection spreads to the nervous system it can cause stiff neck, disorientation, or convulsions
- Even though the infection can occur at any time during pregnancy, it is most common during the third trimester when your immune system is somewhat suppressed.

Effects on the Fetus

- Miscarriage
- Premature delivery
- Infection of the newborn
- · Death to the newborn
- Treatment
 - Antibiotics
 - Antibiotics are also given to newborns with listeriosis

Neonatal Disease: I

- Early onset:
 - Results from intrauterine infection, which can cause clinical illness in the newborn at birth or shortly after.
 - Is characterized by widely disseminated granulomas in the liver and placenta as well as other organs
 - May be associated with aspiration of infected amniotic fluid, which can lead to respiratory distress.
 - Signs of meningitis are rare in early-onset infection

Neonatal Disease: II

- Late onset:
 - Occurs several days to weeks after birth
 - Infants are generally born full term, healthy at birth, and delivered to mothers who have uncomplicated pregnancies.
 - Is more likely to present as meningitis
 - Case fatality rates are lower in late-onset disease than in early-onset infection (Britain study)

Infants with Listeria

- Infants who become infected with listeria monocytogenes during the birth process develop symptoms, usually of meningitis, in the 8-12 day period following delivery.
- The incidence of human listeriosis is highest in the first month of life (Nichols and Woolley, 1962).

Meningitis in Children

- · Symptoms:
 - In most cases, meningitis develops over 1-4 days, however in some cases, a child who looks healthy can rapidly become seriously ill within 1 day (death is possible)
 - Depending on the child's age signs and symptoms are not always obvious, because the child cannot communicate symptoms the same way an adult can
- Symptoms in infants <3 months"
 - decreased liquid intake
 - Vomiting
 - increased irritability

Symptoms Cont...

- -Increased lethargy
- -bulging fontanelle
- seizure activity
- Symptoms in children >1 year
- -nausea and vomiting
- -headaches
- -increased sensitivity to light
- -lethargy
- -altered mental status -seizure activity
- -neck stiffness or pain
- -neck stiffless of pall
 -knees automatically brought up toward the body when the neck is bent forward or pain in the legs
 -inability to straighten the lower legs after the hips have already been flexed

Listeria monocytogenes

• Human stillborn -- Granulomaosis infantiseptica

Exams and Tests

- Upon arrival at emergency room
- Temperature
- Blood pressure
- Respiratory rate
- Pulse
- Oxygen
- If necessary:
- -a spinal tap or lumbar puncture (this is an essential procedure in which cerebrospinal fluid is obtained from the child and then analyzed in a laboratory)
- -the fluid is used to check for white and red blood cells, protein, glucose, and organisms

Regulations on L. monocytogenes

- FDA/FSIS zero tolerance in cooked and ready to eat foods
 - absence of L. monocytogenes/25g food sample
- 9 CFR Part 430
 - a ready to eat product is adulterated if it contains L. monocytogenes, or if it comes into direct contact with a food contact surface that is contaminated with L. monocytogenes
 - product can be subjected to recall or seizure

Control of L. monocytogenes in food

- Products at high risk
 - raw material or product exposed to contamination
 - product manufactured with no processing stage capable of destroying L. monocytogenes
 - product with little or no preservation factors
 - . e.g. neutral pH, low salt, high moisture
 - product exposed to post-process contamination
 - product sold with long shelf-life under chilled conditions
 - product sold as ready-to-eat

Control of *L. monocytogenes* in food

- Dependent on four key factors
 - preventing contamination of raw materials or growth in raw materials, if present
 - destroy or reduce if present in raw material
 - prevent recontamination after a reduction or destruction stage
 - minimize growth during the shelf-life or the final product

Control of *L. monocytogenes* in raw material

- Ubiquitous nature of *L. monocytogenes* them impossible to eliminate from raw materials
- Goa
 - reduce contamination levels entering the process
 - · improve sanitation at raw material producer facility
 - · maintain and monitor hygiene practices

Control of *L. monocytogenes* in raw material

- Raw milk
 - hygienic milking practices involving udder cleaning
 - cleaning and sanitation regime applied to the milking and milk storage equipment
 - all elements from farm to processing factory must be accounted for
 - provide incentive payment schemes for rewarding consistent high-quality milk

Control of *L. monocytogenes* in raw material

- Raw meat and fish
 - control of hygiene during slaughter and preparation stages critical for minimizing contamination
 - routine monitoring of incoming material to ensure high quality

Control of *L. monocytogenes* in raw material

- Fruit, vegetables, and other raw material
 - use of animal waste must be carefully controlled
 - must be properly composted to ensure sufficient heat generation for microbial reduction prior to application
 - · artificial fertilizers should be employed when possible
 - good storage conditions
 - low temperatures or short periods, minimize moisture
 - · maintain intactness of produce

Control of *L. monocytogenes* in processing

- Proper application of processing can significantly reduce or achieve the destruction of *L. monocytogenes*
 - validation is critical
 - assists in identifying where to apply the controls and the parameters necessary to ensure reduction or destruction

Control of *L. monocytogenes* in processing

- Cooking
 - primary process to control L. moncytogenes in cooked meats, ready meals, dairy desserts
 - important control factors
 - minimum in-going temperature of material
 - product size
 - cold spots/temperature distribution
 - container fill load/oven load
 - minimum time/temperature setting per load

Control of *L. monocytogenes* in processing

- · Fermentation processes
 - use of fermentation and dry process to reduce levels of microbial contaminants present in raw material
 - Control
 - effective pasteurization if applicable
 - avoidance of post-process contamination
 - · ripening and slicing stages

Control of *L. monocytogenes* in processing

- Washing processes
- double ended sword
 - can spread contamination as well as reduce contamination
- ensure that the active ingredient is present in its active form on a continuous basis
- · regularly change wash water

Control of *L. monocytogenes* in processing

- Post-process contamination
 - · contamination sources
 - environment
 - · direct product contact surfaces
 - cross contamination from raw materials
 - Control
 - reduce or eliminate L. monocytogenes from the postprocessing environment

Control of *L. monocytogenes* in processing

- Post-processing control
 - segregation of raw material processing (low risk area)and finished product areas (high risk area)
 - e.g. dividing walls
 - flow control
 - positive air pressure maintained in high-risk area ensures air flows from the high- to the low-risk area
 - drainage from high- to low-risk area

Control of *L. monocytogenes* in processing

- Post processing control
 - · effective cleaning and disinfection
 - Equipment
 - parts should be routinely dismantled and thoroughly cleaned
 - non-contact surface reservoirs
 - often overlooked
 - i.e. table ledges, door handles
 - floors, walls, cracks, drains
 - · routine monitoring of cleaning efficacy

Control of *L. monocytogenes* in the final product

- Packaged final products sold as units are generally protected from further contamination
- Exceptions
 - bulk products sold to retailers for slicing or open display on the deli counter
- Cleaning and disinfection of utensils, equipment, and retail surfaces used for slicing and preparation is crucial

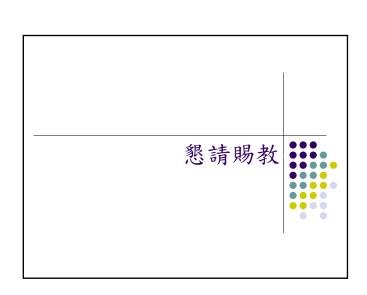
Control of *L. monocytogenes* in the final product

- Shelf-life control
 - important for non-cooked products with occasional contaminants
 - shelf life estimation
 - predictive models of *L. monocytogenes* in foods under varying physico-chemical conditions
 - supplement with challenge tests in actual product

Control of *L. monocytogenes* in the final product

- Product labeling
 - consumer actions are important in maintaining the safety of products following purchase
 - temperature control labels
 - "Keep Refrigerated" labels
 - shelf-life indicator
 - "use-by" date

Control of *L. monocytogenes* in the final product



- Product labeling
 - advise vulnerable populations of the need to avoid certain foods where L. monocytogenes may be an occasional contaminant
 - cooking guidance
 - should be correct and clearly printed on the package

Conclusion

- Main challenge of controlling *L. monocytogenes*
 - consistent implementation of known control strategies
- Effective application of HACCP principles the only way ensure the safety of minimally processed foods with increased shelf-life

